Dissertativa 7 - Matemática - IME 2004

Gabarito

  • Questão ativa

  • Já visualizadas

  • Não visualizadas

  • Resolução pendente

  • ANL

    Questão anulada

  • S/A

    Sem alternativas

Questão 7

Dissertativa
7

Considere a parábola P de equação y = ax2, com a > 0 e um ponto A de coordenadas (x0, y0) satisfazendo a y0 < ax02. Seja S a área do triângulo ATT’, onde T e T’ são os pontos de contato das tangentes a P passando por A.

a) Calcule o valor da área S em função de a, x0 e y0.

b) Calcule a equação do lugar geométrico do ponto A, admitindo que a área S seja constante.

c) Identifique a cônica representada pela equação obtida no item anterior.

Resolução:

7

Downloads

  • Outros arquivos

Fique por dentro das novidades

Inscreva-se em nossa newsletter para receber atualizações sobre novas resoluções, dicas de estudo e informações que vão fazer a diferença na sua preparação!